
nci.org.au

@NCInews

Introduction to NCI
http://nci.org.au/user-support/training/

help@nci.org.au

Outline

• Introduction

• Accounts and Projects

• Connecting to Raijin

• Batch Processing on Raijin

• Filesystems

Introduction

What is the NCI?

• Peak Facility
• HPC system: Raijin

• Cloud services

• Data management

• Specialised Support
• Academic Consultants

• 3 full-time, 2 part-time

• All science PhDs (except me – soon)

• Discipline-specific

• Application-specific

Allocation Schemes

• National Computational Merit Allocation Scheme (NCMAS)
• Highly-competitive, premier allocation scheme

• Includes NCI (Raijin), Pawsey Centre (Magnus), VLSCI (Avoca), Monash
(MASSIVE), and UQ (FlashLite)

• 15% share of Raijin

• Partner Shares
• Government agencies, research centres, and universities

• Each NCI partner has a share of the resources to distribute at their discretion

• GA share: 3.395% = 17 MSU (17 million core hours)

• Contact: Wendy Wells

Allocation Schemes

• Flagship projects
• Identified as high-impact or of national strategic importance

• Commercial and industry partners

• NCI Start-up Scheme
• Evaluate the suitability of NCI

• Preparation for a major application

• Maximum of 5kSU per year

Integrated Ecosystem

• World-class HPC system – Raijin
• 1.2 petaflop peak compute performance

• 24th on Top500 list when built (currently 86th)

• Supercomputer-grade cloud infrastructure
• Specialised “virtual laboratories”

• Hosted data distribution services

• NCI-global Lustre filesystems
• Very high performance – up to 150GB/s read/write

• Mounts available on HPC systems and NCI-managed virtual services

Integrated Ecosystem

• Large selection of software packages
• Custom-compiled for the best performance on Raijin (where possible)

• Includes several commercially licenced packages

• If there’s one you need that’s not already there, ask us!
• If there’s enough interest, we may install it in /apps

• We can also help you install it in your own space

• We provide the Intel compiler suite for you to build your own
• C/C++ and Fortran compilers

• Performance libraries (IPP, MKL, MPI, TBB, …)

• Performance and debugging tools

HPC System – Raijin

• Fujitsu Primergy cluster

• 3592 compute nodes, 7 login nodes, 6 data movers, 60 storage
• Each has 2 Intel Xeon E5-2670 (8 core, Sandy Bridge, 2.6GHz)

That’s 57,472 cores…

• 2/3 of the compute nodes have 32GB, 1/3 have 64GB, 72 have 128GB
That’s 158TB of RAM…

• 56Gbit/s full-fat-tree InfiniBand network
Each node has a dedicated link back to the core of the network

HPC System – Raijin

HPC System – Raijin

HPC System – Raijin

• 1 huge-memory node
• 4 x Intel Xeon X7542 (6 core, Nehalem, 2.66GHz)

• 1TB RAM

• 2 FusionIO nodes
• 2 x Intel Sandy Bridge E5-2670 (8 core, Sandy Bridge, 2.6GHz)

• 128GB RAM, 1.1TB FusionIO card mounted as swap

• 2 GPU nodes (pre-production testing, more on the way)
• 2 x Intel Xeon E5-2670v3 (12 core, Haswell, 2.3GHz)

• 4 x nVIDIA Tesla K80 GPUs (i.e. 8 x K40s)

• 128GB RAM on host, 24GB RAM per GPU

HPC System – Raijin

• Primary filesystems are all Lustre
• Provided over the main InfiniBand network

• Aggregate performance of up to 150GB/s

• Single-node, single-OST performance is 1GB/s

• NCI-global filesystems mounted at /g/data{1,2,3}
• Also over the main InfiniBand network – so also high performance

• Each node has a node-local disk (“jobfs”) for IOPS-intensive work

HPC System – Raijin

Cloud Infrastructure – Nectar

• National eResearch Collaboration Tools and Resources
• Every researcher at an Australian university has small allocation

• Can apply for more resources through Nectar

• NCI node is based on same technology as Raijin
• 2 x Intel Xeon E5-2670 (8 core, Sandy Bridge, 2.6GHz)

• 56Gbit/s Ethernet network

• SSD-backed ephemeral storage

• Distributed, self-healing (Ceph) volume storage

• Designed for heavy floating-point computation, high-IOPS workflows,
and high-speed data transfers

Cloud Infrastructure – Tenjin

• Exactly the same hardware as the Nectar cloud

• Our “private” cloud – available to NCI partners

• NCI-global filesystems are available on request
• Provided over 10Gbit/s Ethernet via NFS

• Designed for services complementary to the HPC system
• Exporting processed data sets to the world

• On-demand (rather than batch) computation

Accounts and Projects

Applying for an Account

• Go to my.nci.org.au and follow the prompts

• You need to use your institutional e-mail address

• You will be asked for a project code during the sign-up phase

• The Lead Investigator of the project will be e-mailed for approval

• Once approved, a username will be generated and e-mailed to you
• NCI usernames have the form abc123

• Your username is used for logging in to most systems

• You can then log in to the appropriate systems

Joining another Project

• You can join another project in addition to the one you signed up with
• Will give you access to other allocations, data sets, software, …

• Go to my.nci.org.au, log in, and follow the prompts
• Shortcut: if the project code is “ab1”, go to

my.nci.org.au/mancini/project/ab1/join

• The Lead CI of that project will be e-mailed for approval

• Your account will be automatically disabled once disconnected from
all active projects

Proposing a New Project

• You can propose a new project using my.nci.org.au.

• If you don’t already have an account, you can also propose a project
during signup

• You will need to specify which allocation scheme to apply under
• Most schemes accept applications any time during the year

• Notable exception is NCMAS: application round is open late in the year

• Each allocation schemes has it’s own requirements

Resource Allocation and Accounting

• All usage of compute systems is accounted against projects

• If your account is connected to multiple projects, you will need to
specify which to debit
• “project” attribute for PBS jobs

• group ownership for filesystem objects

• Compute allocations on Raijin are applied on a quarterly basis
• Unused time at the end of the quarter is lost

• Storage allocations are generally persistent

• A project may be funded by multiple allocation schemes

Connecting to Raijin

Connecting to Raijin

• The hostname for Raijin is raijin.nci.org.au
• This will connect you to one of the 6 login nodes

• All interactive access to Raijin is command-line based via SSH

• UNIX-based operating systems (Linux, Mac OS X) have SSH built in
• ssh -l abc123 raijin.nci.org.au

• Windows users will need to install a client
• PuTTY, MobaXterm, Cygwin, …

• You may need to get your local ITS to install it for you

Connecting to Raijin

• File transfers also need to be performed via SSH
• scp, sftp, rsync, …

• For UNIX-like operating systems, these are probably already installed

• For Windows, you’ll need to install a client
• These typically have nice GUIs

• PSFTP, FileZilla, WinSCP, …

• You should use the dedicated data-mover nodes, r-dm.nci.org.au
• The filesystems are mounted exactly as on the login and compute nodes

• But you won’t be able to start interactive sessions here

Connecting to Raijin

• If you to run a graphical application on Raijin and have the GUI open
on your local machine, you’ll need to enable X-forwarding

• You’ll also need to be running an X server locally
• Linux and Max OS X 10.7 and below have this installed already

• Mac OS X 10.8 and above need XQuartz

• There are many Windows clients: MobaXterm, Xming, Xwin32, …

• For UNIX-like operating systems, add “-X” to the ssh command

• For Windows, consult the documentation for your client

Connecting to Raijin

EXERCISE

• Get a username from the list

• The password is [redacted]

• Connect to Raijin and have a look around
• ls will list the contents of the current directory

• df will show mounted filesystems (and their size)

• cd will change directory

• env will display your environment variables

Default Environment

• Your working environment is controlled by your shell
• This is automatically launched when connecting via SSH

• The default shell is Bash
• We also have tcsh, ksh, and zsh

• You can change your default shell by modifying your .rashrc file

EXERCISE

• Display the contents of your .rashrc file.
• cat ~/.rashrc

• The “~” is automatically expanded by the shell into your home directory

Default Environment

• There’s a second line in your .rashrc defining your default project

• You can change your working project at any time
• switchproj ab2

• You can also run a single command under another project
• nfnewgrp ab2 cat /short/ab2/my_file_under_ab2

• Of course, you must be part of that project for these to work…

Allocation Management

• You can easily view the status of your projects’ allocations from the
command line

• nci_account [-P ab2] [-p 2016.q2] [-v]
• -P specifies the project (uses your current project if not present)

• -p specifies the period (remember, quarterly compute allocations)

• -v produces more detail

EXERCISE

• Look at the current allocation for project c25 (your default project)

Configuring Your Default Environment

• You can customise your default environment by editing special files in
your home folder

• There are two files – one controls login shells, the other non-login
• A login shell is launched when connecting via SSH

• A non-login shell is launched whenever you invoke a shell otherwise

• You general want to keep the non-login shell configuration very
simple – it gets parsed more often than you’d think

Loginshells Non-login shells

shand derivatives (sh, bash, ksh, zsh) .profile .bashrc

cshand derivatives (csh, tcsh) .login .cshrc

Environment Modules

• Different software packages have different environments

• Environment modules allows us to package these environments

• Modules on Raijin are named after the package and the version

• The module command allows you to manage your environment

• module help displays the help for this command

EXERCISE

• Take a look at available modules and load the openmpi module
• Look at module avail and module load

Environment Modules

• We recommend loading modules as needed, both interactively and in
your scripts

• If you really want particular modules loaded on login, add this to your
.profile file
• Adding them to your .bashrc will have unexpected results

• This is due to dependencies and conflicts between various modules.

EXERCISE

• Assuming the openmpi module is still loaded from before, try to load
the intel-mpi module

Editing Text Files on Raijin

• There are several command-line based text editors on Raijin
• vi / vim

• Emacs

• Nano

• Which to use is up to you!
• I use vim for nearly everything, but Emacs for Fortran source code

• You can also edit files on your local machine and upload them
• But keep in mind that Windows uses a different new line character to UNIX

• Need to run dos2unix on Raijin to convert once uploaded

Batch Processing on Raijin

Interactive Limits

EXERCISE

• There’s a program called use_memory in /short/c25

• It takes one argument – the amount of memory to use
• Can suffix the value with k, m, g, or t (for kilo-, mega-, giga- and tera-bytes)

• Run it with various values and see what works and what fails
• You would invoke it as, e.g. /short/c25/use_memory 1m

• I’d recommend 1, 1k, 1m, 100m, 1g, 5g, and 1t

• Can you find the maximum that works?

Interactive Limits

• Typically more than 100 users connected to each login node

• “Only” 96GB in each login node – less than 1GB each

• To avoid running out, we limit user processes to 2GB

• Also limit CPU time to 30 minutes

• Most programs need more than this – use the batch queues
• Small test cases are okay on the login nodes

• But still be careful – even with limits, easy to use all RAM

Batch Queues

EXERCISE

• Interact with the batch system and see what it running
• Make sure you have the pbs module loaded first: module list

• The qstat command will list all jobs on the system

• Using qstat -a will give an alterative view

• Might want to pass the output to less: qstat | less
• To scroll, use arrow keys or the space bar

• To exit less, press q

Batch Queues

• Lots of jobs in the queue
• Some small, some big

• The queuing system has several advantages
• Distributes jobs evenly over system

• Ensures jobs don’t impact each other

• Provides equitable access to all users (based on allocation)

• We run PBS Professional (version 13) on Raijin
• Well-defined API, the same across all PBS implementations

• We also have our own custom integration between PBS Pro and Raijin

Batch Queues

• Not all jobs look the same – multiple queues

• normal queue
• For general, everyday jobs

• Charged at 1 SU per core-hour (i.e. walltime x ncpus)

• express queue
• For quick-turnaround jobs, e.g. interactive or debugging

• Charged at 3 SU per core-hour

• copyq queue
• Runs on data-mover nodes, has access to external resources

Batch Queues

• Access to specialised queues is available on request

• hugemem queue
• Runs on the single “huge-memory” node

• fusionio queue
• Runs on the FusionIO nodes (i.e. large swap)

• gpu queue
• Runs on the GPU nodes

• Charged at 5 SUs per core-hour

Queue Limits

• The various queues all have different limits based on their purpose

• These are generally flexible, within reason

• If you need them changed, ask us
• We’ll probably ask you to explain why you need the exception

Queue Limits

Queue Jobs CPU/ GPU Walltime

normal 300 per project No limit
Multiple of 16 above 16

48 hours on < 256 CPUs
24 hours on < 512 CPUs
10 hours on < 1024 CPUs
5 hours on >= 1024 CPUs

express 50 per project
10 per user

3200
Multiple of 16 above 16

24 hours on <= 160 CPUs
5 hours on > 160 CPUs

copyq 200 per project 1 CPU 10 hours

hugemem 200 per project Multiple of 6 576 core hours

fusionio 200 per project No limit 24 hours

gpu 200 per project Multiple of 2 GPUs
Multiple of 6 CPUs

Example Job Script

#!/bin/bash

#PBS -l walltime=1:00:00

#PBS -l mem=5GB

#PBS -l jobfs=1GB

#PBS -l ncpus=16

#PBS -l software=xxx

/short/c25/use_memory 4G

Interacting with PBS

• To interact with PBS, you will need the pbs module loaded

• The three most useful commands
• qsub – submit a job

qsub myscript.sh

returns the job id

• qstat – get the status of job(s)

qstat (all jobs)

qstat 12345 (just job 12345)

qstat -u abc123 (jobs of user abc123)

• qdel 12345 – delete job 12345

Interacting with PBS

EXERCISE

• Submit a job to PBS and wait for it to finish

cd /short/$PROJECT/$USER

tar -xvf /short/c25/intro_exercises.tar

cd INTRO_COURSE

cat runjob

qsub runjob

qstat -u $USER

Job Outputs

• The standard out and error streams of your script are collected by PBS

• These get saved to files in the submission directory on exit
• <name>.o<jobid> for standard out

• <name>.e<jobid> for standard error

• You can also redirect the output from individual commands

EXERCISE

• Have a look at the output files from the previous exercise

Interactive Jobs

• Some times you need to interact with a job as its running
• For example, using the MATLAB desktop

• You can submit an interactive job using the -I option to qsub

• If you need X windows forwarded from the job, add the –X option

EXERCISE

• Submit an interactive job
• qsub -I -lncpus=1,mem=5g,walltime=00:15:00 -qexpress

• Have a look around the compute node

• Run the use_memory program with various values again

Filesystems

Filesystems on Raijin

• There are several filesystems available on Raijin

• Which to use depends on the files you are storing

• Not all projects have access to all filesystems

Mount Purpose Default Quota BackedUp Availability Persistence

/home Irreproducible data, e.g.
source code and scripts

2GB per user Yes Raijin Permanent

/short Working data 72GB per project No Raijin 365 days

/g/data{1,2,3} Large data sets Negotiable No NCI-global Permanent

$PBS_JOBFS Job-specific data 100MB per node No Node Jobs

MDSS Archiving Negotiable Dual-copy Unmounted Permanent

Monitoring Disk Usage

• If you exceed a project quota on any filesystem, your access to PBS is
suspended

• You’ll get an automated e-mails regarding your usage
• A warning at 90%

• A message at 100% asking you to reduce your usage

• Daily reminders while above 100%

• Be proactive about monitoring your usage

Monitoring Disk Usage

EXERCISE

• Have a look at your usage on the various filesystems

• lquota – query Lustre for current usage

• nci_account – what our accounting and PBS systems sees

• short_files_report – breakdown of usage by user
• To see usage, add -h flag

• gdata?_files_report – as above

I/O: The Good, the Bad, and the Ugly

• Lustre is a high-performance, distributed, clustered filesystem

• Metadata is separate from actual data

• Lots of locking to maintain consistency across all nodes
• This has overhead

• Very high bandwidth, but comparatively poor IOPS
• Still more than a normal desktop can do

• To get good performance, you should read and write in 1MB blocks

• Lots of small I/O can severely impact all jobs on the system

I/O: The Good, the Bad, and the Ugly

• Writing to /short every second is far too often

• If you program does this:
• Change the program if possible

• Otherwise use the node-local disks (jobfs)

• Since jobfs not shared, there’s no overhead from the locking

• Filesystem cache also much more effective
• Disk-memory = 100MB/s, memory-memory = 12GB/s

• You can request space on jobfs using the -ljobfs=xxx PBS option
• Inside a job, the path to jobfs is in the PBS_JOBFS environment variable

Filesystem Permissions

• POSIX permissions are the standard way of controlling access

• Have read, write, and execute permissions

• “user”, “group”, and “world” permission sets

• Extra, special permission bits for other behaviour
• setuid, setgid, sticky, restricted delete, …

• Often expressed as a string like “rwxr-xr-x”

• Use chmod to change these permissions
• chmod u+w,g=rx,o= my_file

• Can also express this as a sequence of octal numbers

Filesystem Permissions

• Can assign more fine-grained permissions using ACLs
• Give specific user access to file, even though not in the group

• Give another group read permission but not write

• Highly recommend you consult with us first
• Very easy to get it wrong and leave your files open to the world

• Use the setfacl command to set them:
• setfacl -m u:abc123:rw my_file

• Use the getfacl command to view them:
• getfacl my_file

Massdata Storage System

• Our “massdata storage system” consists of a large tape library with a
1PB cache in front.

• Used for long term storage of large files
• If you have lots of small files, tar them up first

• Not mounted as a filesystem on Raijin
• Emphasises that it’s not designed for constant read/write

• Access is via mdss command
• mdss get

• mdss put

Data Recall from Tape

